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Recent ly ,  a non l inea r  m a s t e r  equa t i on  ha s  been  sugges ted  to accoun t  for  
the  effect o f  d i f fus ion in the  f luc tua t ions  o f  non l inea r  sys t ems  away  f r o m  
equi l ib r ium.  A n  a sympto t i c  expans i on  o f  the  so lu t ions  o f  this  mas t e r  
equa t i on  in the  inverse  o f  the  diffusion c o n s t a n t  is presented.  The  appl ica-  
bility o f  the  m e t h o d  is i l lus t ra ted with several  examples  o f  m o d e l  chemica l  
reactions. 
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1. INTRODUCTION 

Recently, Prigogine and Nicolis (z,2> stressed the necessity of  a local descrip- 
tion of fluctuations in nonlinear systems away from equilibrium. A macro- 
scopic system is considered as a set of  cells whose size is of the order of  the 
mean free path and which communicate between themselves via a transport  
of  matter. The variables of  the stochastic description are the numbers of  
particles in the various cells. This leads to a multivariable probability and 
the master equation that governs its evolution consists of  two partsC3'~: 
one that takes into account the change due to chemical reactions in each 
single cell and which is described by the birth and death formalism, and a 
second one that represents the diffusion between the different cells. 

Since this multivariate master equation is not easy to handle, a simplified 
version has been worked out, which can be regarded as a "mean-f ield" 
theory of fluctuations. In this approach a subvolume is considered whose 
size corresponds to the correlation length of  the fluctuations and can thus 
be regarded to be statistically independent of  the rest of  the system. The 
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stochastic variable is the number of particles in this subvolume, 2 which is 
coupled via diffusion to its environment. In the case of a macroscopically 
homogeneous system the latter is taken into account in the mean, and this 
leads to a nonlinear master equation, tl,z~ This formalism was used recently 
by Nicolis et aL c5~ to study the onset of instabilities. Even in this simplified 
version the calculation of the exact solution of that master equation is only 
rarely possible. 

For linear master equations different expansions---e.g., in the inverse 
of the system size, which is considered to be large (6~ have been proposed to 
obtain approximate solutions. However, these expansions in a parameter 
only implicitly contained in the master equation finally imply a truncation 
of the hierarchy of moments which is not justified if the moments are of 
comparable importance. This is the case for a multimodal distribution or 
for systems in the vicinity of a transition. In these situations therefore such 
an expansion becomes inadequate. The nonlinear master equation, on the 
other hand, contains explicitly a parameter, the diffusion coefficient, which 
can serve as an expansion parameter: It shows a resemblance with the equa- 
tions encountered in kinetic theory and therefore one could seek for asymp- 
totic solutions of a kind similar to the Chapman-Enskog solution of the 
Boltzmann equation, (v~ namely an asymptotic expansion in the inverse of 
the diffusion constant. As is well known, the Chapman-Enskog expansion 
is based on the presence of processes evolving according to two different 
time scales in the Boltzmann equation: one associated with the free motion 
of the particles, and a second associated with collisions. 

Now this is exactly what happens in the nonlinear master equation of 
the mean-field theory--and in the multivariate description as well---except 
that the role of the reaction and diffusion contributions are somewhat the 
"inverse" of the collision and free-particle contributions in the Boltzmann 
equation: Indeed, in our case the reactive collisions tend to destroy the 
Poisson distribution--the analog of local equilibrium in kinetic theory-- 
whereas diffusion tends to reestablish this distribution. This suggests the 
existence of an expansion, provided the diffusion is much more rapid than 
the macroscopic evolution due to chemical reactions, which would thus 
furnish a systematic scheme providing approximate solutions. 

In Section 2 we will present the general formulation of such an expansion, 
namely an asymptotic expansion in the inverse of the diffusion parameter. 

' Since the range of validity of this expansion cannot be established in general-- 
a situation often encountered in dealing with asymptotic expansions--its 
application will be considered in several particular cases. Section 3 deals 
with systems in which only the elementary reaction steps + 1 are possible. 

2 It should be noticed that there is of course no relation between the size of the above- 
mentioned cells and that of this subvolume. 
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In this case the principle of detailed balance is obeyed, so that the exact 
stationary solution can be found by a recurrence formula. In Section 4 we 
will deal with an example where the exact stationary solution is known but 
the principle of detailed balance does not hold. In Section 5 we will study the 
time-dependent solution for a linear and therefore exactly soluble system. 

Whereas in this paper examples are given only to illustrate the method 
of the asymptotic expansion, a subsequent paper will deal with the stability 
properties of the solutions of the nonlinear master equation. In particular, 
the problem of chemical instabilities far from equilibrium will be studied 
in detail. 

2. AN ITERATION PROCEDURE FOR A S Y M P T O T I C  
SOLUTIONS OF THE NONLINEAR MASTER EQUATION 

The probability P(x ,  r) of finding x particles in the subvolume 2x V of 
the overall reaction volume obeys, if the system remains macroscopically 
homogeneous, the following master equation(2~: 

aP/a~ = Ro~ + ~ ( x ) [ P ( x  - 1, ~) - P(x ,  ~)1 

+ ~[(x + O P ( x  + 1, , )  - x P ( x ,  ,)] (1) 

where Rob describes the change of P(x ,  r) due to the chemical reactions in 
A V and ~ is the rate of exchange of matter between A V and V - A V. 

Obviously P depends on ~ and, as is well known, (2~ as ~ increases, P 
approaches a Poisson distribution. 

Let toh be the characteristic time scale of (macroscopic) evolution due to 
the chemical reactions and t, be that of the diffusion (cf. the discussion in 
Section 1). If  

tch~ ~ tobit, >> 1 

we can introduce the dimensionless smallness parameter e = 1/toh~. Re- 
scaling the time t = r/to~, we obtain from (1) 

dP  1 
--~ = Rob + -e { ( x ) [ P ( x  - 1, t)  - P (x ,  t)] 

+ (x + 1)P(x + 1, t)  - x P ( x ,  t)} (2) 

From (2) it is suggestive to try to represent its solution as an asymptotic 
expansion with respect to e: 

P(x ,  t, e) = P(~ t)  + eP(l)(x, t) + ... (3) 

and similarly 

<x"> = <x"> (~ + r m + ... (4) 
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Let us for the moment assume that such an expansion is meaningful and 
investigate how P(") can be calculated. We will show that this can be done 
by an iteration and that p(o) is a Poisson distribution. In other words (3) can 
be interpreted as a perturbation expansion around the Poisson distribution. 

It is convenient to switch to the generating function representation: 

F(s, t) = ~ sxP(x, t) (5) 
X = 0  

F(s, t) ~- F(~ t) + ,F(1)(s, t) + ... (6) 

Furthermore, it is clear that the norm of P(x, t) is independent of E, i.e., 
Y x P(x, t) = 1 for all E, so that 

E PC~ t) = 1, ~, P(")(x, t) = 0 for n /> 1 (7) 
X X 

These relations yield for the generating function 

F(~ t)[~=l = 1, F(")(s, t)[~=l = 0, n /> 1 (8) 

From (2) we can derive the following evolution equation for the generating 
function: 

~,F(s, t) = i~ohF(s, t) + ( l / , ) ( s  - -  1 ) [ ( x )  - -  e~]V(s, t) ( 9 )  

In the range of validity of the asymptotic expansion, Eqs. (2) and (9) have 
to hold for any order in E. Since the "chemical operator"  is independent 
of ~ ,  we find for the dominant order ~- ~ 

[(x)  (~ -- O~]F(~ t) = 0 (10) 

For  convenience we will present all calculations in the generating function 
representation, but of course all steps can also be performed without diffi- 
culty in the probability distribution representation. 

The only solution of (10) is the Poisson distribution: 

F(~ t) = exp[<x>~~ - 1)] 

o r  

P(~ t) = [exp( -  (x)i~176 (11) 

Obviously (x)~ ~ still has to be determined. This can be done by considering 
the next order, i.e., ~o: 

O~F(~ t) = _~chF (~ + (s -- 1)[(x)(~ (1> + (x)~l)F (~ - 8~F (1)] (12) 

Taking derivatives of both sides with respect to s and setting s = 1, we obtain 

(x)~ ~ = e,0~F(~ = O~KohF(~ (13) 
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It is well known (2) that for a Poisson distribution the evolution equation for 
the mean is identical to the macroscopic kinetic equation. Therefore the 
macroscopic kinetic evolution determines <x)~~ thus also P(~ 
pletely. 

Note that this implies multiple stationary solutions for p(o~ and for 
P ( x ) ,  if the macroscopic kinetic equation admits multiple steady states, 
provided the asymptotic expansion remains valid. We will now formulate 
the iteration procedure to calculate the (m + 1)th correction to F ~~ 

Let us assume that F("~(s, t )  is known for n ~< m. For the ruth order, 
Eq. (9) yields 

OtFCm~(s, t )  = l":oh~ ,~m) + (S -- 1)[<X)<~ t)  

+ <x>(1)F (m) + <x>(2)F (m-l) + ... + <x>(m+l)F (~ 

- ( s  - 1)  ~ , F  (m+l~ ( 1 4 )  

Rearranging terms, we find 

O,F (~+1~ - ( x>(~  (re+l) = ~(m)(F(~ ..... F (m>, (x>(~ (x> (m+l~) (15) 

The solution of this equation is 

F(=+l~(s, t) = {exp[<x>(~ - 1)]}~(m~(s, t) (16) 

where #(=>(s, t) denotes 

#('~(s, t) = d~ {exp[-<xJ~ - 1)]} 

X ~o(m)(F(~ t), . . . ,  f(m)(~, t),  <X>(~ <x> (re+l)) (17) 

As was the case for the zeroth order, (x> (m+l~ is yet undetermined. 
By taking derivatives of both sides of the equation for F ("+ 1)(s, t) and 

putting s = 1, we find, however, 

Ot<x>(m + 1) = Os_~ohF(m + 1) Is = 1 (18) 

The right-hand side will be a function of {<x'> ~ + 1>}, where i depends on the 
order of the reactions. For  any i, <x~> (m + 1> can be expressed as a function of 
{<xj0>,..., (xJm§ 1>} via equation (16), so that we finally find 3 

Ot<x>(m + 1) = qr~)(<X>(0),... ' <x>(m + 1)) ( 1 9 )  

This enables us to determine <x>~ 'n+l> and thus complete the computation 
of the (m + 1)th correction. 

In conclusion, there exists an iteration procedure to calculate as many 
corrections to the Poisson distribution as desired. It is the purpose of the 

8 Note that (19) is in general different from the macroscopic equation since P(~+~ will 
in general not be a Poisson distribution. 
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subsequent sections to test the validity as well as the kind of information 
obtained from this method on representative, simple examples. 

3. M O D E L S  W I T H  E L E M E N T A R Y  REACTION STEPS +1 

In this section we consider a chemical system in which only reactions 
of the type 

AD + vpX ~- (vp + 1)X (20) 

take place. 
The contribution from each reaction path p to the birth rate B(x) and 

the death rate D(x) is 

Bo(x - 1) = bp(1/vpl)(x - 1)...(x - vD) for vp 1> 1 
(21) 

B p ( x -  1 ) = b p  forv D = 0  

Do(x ) = do(llvD!)x(x -- 1)...(x -- vo) (22) 

The stationary solution can be found by a recurrence formula, which has 
already been applied by other authors in the absence of diffusion, (8-1~ 

j = ~ vs  ) -t- J 

where B(i) = Zp Bp(i) and D(i) = ~p Dp(i). Since D(x) can be written in 
the form D(x) = xD(x), Eq. (23) yields 

1 ff-I B ( j  : ?) + ~-__2(x) Ps,(O) (24) 
Pst(x) = ~ s=x vLI) "-I- 

It can be shown that there exists a K < oo such that 

B ( j -  1) + e-~(x) 
~< K for all j and e (25) /3(j) + ,-1 

From this it follows that ~x P~t(x) < m, i.e., P~t(x) is normalizable. The 
condition ~x P~t(x) = 1 determines P~t(0). 

From (25) it also follows that there exists an M (independent of e, 
i.e., N) such that 

P[x >1 L] < C exp( -L)  for L />  M (26) 

This property should be expected for a realistic model, since the number of 
particles X that can be found in the subvolume AV possesses of course a 
finite upper bound G. Since by construction of the master equation, i.e., by 
the idealizations made in deriving it, this upper bound is discarded, the 
probability for a very large number of particles (with respect to G) should 
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decrease sufficiently rapidly for  the description to be considered sufficiently 
realistic. This also ensures the existence of all moments  (x") .  

Let us now consider an L t> M and define a probability PL(x) by 

ilL(x) = Pst(X) if X ~< L 
(27) 

= 0  i f x  > L  

and pL(x) = (1/~r)iL(x), with ~ = ~ PL(X). 
I t  is important  to notice that by choosing L sufficiently large, PL(x) 

will become as close as desired to Pet(x), 

supIPL(x)-  Psi(x)[ ~< C e x p ( - L )  (28) 
R+ 

i.e., the "dis tance"  between the probabilities will decrease exponentially 
with L. So pL(x) can be made indistinguishable from the rigorous solutions 
Pst(x) for all practical purposes. 

For x <~ L, IOL(x) = pL(x)/pL(O), 

1 ~=~ ,B(j- 1) + (x )  (29) 
PL(x)  = ~ = , / 3 ( j )  + 1 

I f  the dominant term of /3(x)  is of  the power n (n = max{vp}), then the de- 
nominator  in the product of  (29) can be developed as 

1/[1 + d3(j)]  = 1 - a/3(j') + ,2/30)2 + ... (30) 

provided E < aL -~. 
This means that PL(X) is expandable in a convergent series pL(x) = 

P~o)(x) + aP~I)(x) + E2P~2~(x) + "'" with the radius of  convergence r = aL -~. 
This expansion is of  course only valid if it is compatible with the existence 
of finite ( x )  (~ [see (40)]. I f  we want to increase the precision with which 
pL(x) approximates Pet(x) by, say, a factor ten, we have to choose L '  = 
L + In 10. Since L >> 1, this has almost no influence on the radius of  con- 
vergence. 

This means that for E < r ~ L -~ t h e ,  expansion converges to a func- 
tion PL(x) which is "infinitesimally" close to the rigorous solution P~(x) 
and is therefore an asymptotic solution of the nonlinear master equation. 

As a concrete example, let us consider the following model(l~ 

A + 2 X k l ' 3 X  
k~ 

I,, (31) 
X .  " B  

k4 

We put a = k~A/k2, b = k4B/k2, k = ka/kz, and 1/, = N/k2. Since chemical 
kinetics is formulated for intensive quantities, such as concentration, it is 
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clear tha t  in the particle number  space in which we work  a = O(N),  b = 
O(Na),  k = O(N2) ,  and 1/e = O(N2)~,  where N is the total  number  of  
particles in the subvolume,  N = p A V ~ R 3, where R is the radius of  the 
subvolume.  

We find f rom (33) 

P~t(x)[x(x  - 1)(x - 2) + k x  + ~-~x] 

= [a(x - 1)(x - 2) + b + ~ -~ (x ) ]P~ t ( x  - 1) (32) 

In  te rms of  the generat ing funct ion F ( s )  this relation yields 

d3F d2F  d F  E _ I [ d F  ] 
s 2 - as2-~-~-ff + k - ~  - b F  + [ d s  - ( x ) F ]  = 0 (33) 

or  

RohF(s)  + ~- l [ (dF[ds)  - ( x ) F ]  = 0 

For  the zeroth order  Fr176 we find 

Fr176 = exp[fx)(o)(S - 1)] (34) 

where (X)co~ is  a solution of  

<X>~o) - a<x>~o~ + k<x>co~ - b = 0 ( 3 5 )  

i.e., a s ta t ionary  solution of  the kinetic equation.  I t  is well known that  there 
exists a domain  in the pa ramete r  space (a, b) such that  (35) admits  three 
solutions, one unstable and  two stable ones. This  has the consequence that  
we find three s ta t ionary solutions of  the nonlinear  master  equation.  

We now proceed to calculate the first correct ion Fro(s ) .  We have 

dFa) /ds  - (x)(O)Fa~ = ( x ) m F  (~ - R~hF (~ (36) 

This has the fo rm o f  Eq. (15). The  solution Fr is [see (16) and (17)] 

F(1)(s) = {exp[Kx)(o)(s - 1)]}~bm(s, t) (37) 

w h e r e  

~bm(s, t) = (x)(1,(s - 1) - Fx)~o) ( s  8 - 1) 

+ ]a(x)~o)(S 8 - 1) - k (x ) (o ) ( s  - 1) + b(s - 1) (38) 

I t  is easy to verify tha t  (dFm/ds)[8=l  = ( x ) m .  To  determine (x)(1) we con- 
sider the equat ion 

RchF m = (x)(O~F (2) + ( x ) m F  m + (x)(2~F (~ - dF(2)/ds (39) 

Put t ing s = 1, we obta in  

RohFm[,= l = 0 
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This yields by straightforward calculation 

( x ) m  = -6k<x)~o) + <x)co)[6b + 2ak - 2k] - 2b(a - 1) (40) 
3<X)~o) - 2a(X)~o) + k 

This first-order correction tends to infinity if the denominator tends to zero, 
which happens for values of parameters a and b such that  Eq. (35) has a real 
double root, i.e., at the macroscopic transition points. Due to the hard 
transition at these points (x>r changes discontinuously, a finite <x>(1) no 
longer exists, and our expansion breaks down. 

Below we list the values of  <x>(~) = ~-l((x> - (X>(o)), obtained by a 
numerical evaluation of the exact stationary probability (33). Choosing 
a = 200, b = 110,000, and k = 10,000, we find (X>(o) = 15.35168. 

10 -4 10-5 10-6 i0 -7  

<x---~<l) 2150 2809 2909 2914 

From (40) we obtain for the first correction 

<x>a ) = 2915.1 

We see that as ~ decreases, <x>a) approaches the theoretical value <x><l) 
and that the difference between these two values behaves like a term of 
the order of ~. 

Since for a Poissonian <(~x)2> = <x2> - <x> 2 = (x>, we give the ex- 
pression for <(8x)2> up to first order in ~ to show in a concise way how the 
first correction affects the Poisson distribution: 

<(8x)2> = <x>~0) + E[<x>(1) - 2<X>~o~ + 2a<x>~o)] 

4. A M O D E L  W I T H  E L E M E N T A R Y  REACTION STEPS 
• A N D  •  

In this section we will consider the autocatalytic model 

A + X k~ > 2X 
(41) 

X + X  k2>E 

The stationary solution cannot be found by a recurrence formula in this 
case. 

The equation for the generating function F(s) is, in the stationary case, 

d 2 
[ ~ ( s +  1 ) - ~ - a - k l A s d ] F = ~ [ ( x > - d ] F  (42) 
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or, with ~- 1 = 9[kz, 

( s + 1 d 2 2  ds 2 k l - ' - A s d ) F = ~ - l ( ( x ) - d )  (43) 

where kxA/k2 = O(N) and E- ~ = O(N)N. 
According to (11), we obtain for FC~ 

F(~ = exp[(x)C~ - 1)1 (44) 

with 

(x)  ~~ = 0 or (x)  C~ = klA/k2 (45) 

In the following we will consider only the nontrivial case (x)  (~ = k~A/k2. 
Formulas (16)-(18) yield 

FC1)(s) = {exp[(x)(~ - 1)]} 

[k (s --202 ~'-~2[klA (x)(O, - ~1 (X)~o,) + (x)m(s- 1)] (46) • 

where 

So we obtain 

(x)  (x~ = - kiA/2kz (47) 

klA klA 
(x)  =--~2 - "2-k-s + O('Z) (48) 

On the other hand, it is possible to calculate the exact stationary solution 
for the generating function (see Ref. 2, Appendix A). 

Transforming to the new variable 

z = (s + 1)(2klA)/kz (49) 

we obtain for (42) 

d2F (2 (~  + klA) ) dF ~ ( x )  
z - ~  + kz z dz kiA F = 0 (50) 

with the boundary conditions 

F(4klA[k2) = 1, F(0) finite (51) 

The solution of Eq. (50) under the conditions (51) is the confluent hyper- 
geometric function ~bl: 

F(z) = ~bx(a, b, z)/~x(a, b, 4k~d/kz) (52) 

where 

a = ~-~k2(x)/k~A, b = 2(~ -1 + klA/k2) (53) 
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Using 
hypergeometric function (see Ref. 12), we find 

with 

and 

the well-known Laplace integral representation of the confluent 

r(b) ~] 
,r b, z) = P(a)P(b - a) du ~(u) exp[e-lf(u)] 

~(u) = u-  le~=(1 - U)(2k~Atk2-1) 

k• ( k2{x),] ln (1  - u)  f(u)= (x) l n u +  2 klA ] 

(54) 

(55) 

(56) 

According to a theorem about asymptotic expansions, (13,14) the integral (54) 
admits such an asymptotic representation if the function f(u) assumes its 
maximum in the interval (0, 1). 

This is indeed the case, as is easily seen, if klA > k2, which of course 
holds, since klA/k2 = O(N). Using these results, it can be shown by tedious 
and rather lengthy calculations that 

F(s)=e (8-1)<x> 1 + ~ ( s -  1) 21 k2 ( x ) - ~ ( x )  2 + O(E 2) (57) 

This implies that the mean value (x )  can also be represented as 

(x) = (X)(o) + ~(~)(1) + o(~ 2) 

Indeed, Eq. (43) yields for s = 1 

e[klA 1 ] klA 
{x)  2 + L-F[ {x)  - ~ {x)  2_ - ~ ( x )  + 0(~ ~) = 0 (58) 

In addition to the trivial case {x) = 0 we obtain 

( x ) = ~ k 2  - k~] 1 -  +O(d) 

= ~k2 - e  k 2 ]  1 + + O(d) if 2 > k 2 / 2  

klA klA 
- k2 e-~2 + 0('2) 

So we finally obtain as an asymptotic expansion for F(s) 

[exp ( s -  1)klA] F(s) [ 

x {1-t-,E[~ ~,k2i"klA] 2] 

(59) 

+ u - 1)( \ 2k2]JJ + O(~2) (60) 
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This coincides with the expansion above calculated, Eqs. (44) and (46): 

F ( s )  = F~~ + eF m + 0(~ 2) 

and thus clearly shows that the E expansion given in Section 2 represents in 
this example an asymptotic expansion whose properties are well established, 
even if it is not a convergent expansion in the ordinary sense. 

As in Section 3, let us calculate the first correction to the variance: 

( (~x)  ~) = (X)co, + �89 - (X)~o~] 

5. THE T I M E - D E P E N D E N T  S O L U T I O N  FOR A LINEAR 
M O D E L  

In order to discuss the applicability of the e expansion for the time- 
dependent solution, we consider the linear chemical reaction 

A k ~ > x  

X * ~ > B  
(61) 

The master equation for (61) is 

dP/d'r = k l A P ( x  - 1, r) - k z A P ( x ,  r) + k2(x  + 1)P(x + 1, r) - k2xP(x ,  "r) 

+ ~ ( x } [ e ( x  - 1, T) -- P(X,  T)] 

+ N[(x + 1)e(x + 1, z) - x e ( x ,  r)] (62) 

Due to the linearity of the system, the evolution of the mean obeys the 
equation 

( x }  = k l A  - k 2 ( x }  (63) 

This relation is identical to the macroscopic kinetic equation. 
We can therefore in this case identify to~ with k~ 1 and Eq. (2) has the 

form 

dP  kaA k l A  P~x 
--d[ = ~ P ( x  - 1, t ) - ~  ( , t ) + ( x +  1)P(x+ 1, t) - x P ( x ,  t) 

+ e - l { ( x ) [ P ( x  - 1, t)  - P(x ,  t)] + (x + 1)P(x + 1, t)  - x P ( x ,  t)} 
(64) 

The corresponding equation for the generating function is 

~tF + (s - 1)(1 + ~-1) ~ r  = (s - 1)((x}/~ + k z A / k 2 ) F  (65) 
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The general solution of Eq. (65) is easily calculated to be 

F(s, t) = exp((s - 1){(x) - x0 exp [ - (1  + e-1)t]}) 

x Fo((S - 1)exp [ - (1  + e-1)t] + 1) (66) 

where F0(') is the generating function at t = 0 and 

( x ( t ) )  = (xo - k iA/k2)e  -t + k~A/k2 (67) 

Let us consider two special initial distributions: 

P(x,  0) = 3x xo and P(x, 0) = (x(0))~ ' x! e x p ( -  (x(0))) 

In the first case (66) yields 

F(s, t) = exp((s - 1){(x) - x0 exp[ - (1  + E-1)t]}) 

x { ( s -  1 ) exp [ - (1  + e-1)t] + 1}~o (68) 

for which obviously no expansion of the form (6) exists for t ~< e. This is 
in complete analogy to the "initial layer" of the kinetic theory of gases3 ~5~ 
This has to be expected since our initial distribution represents a considerable 
deviation from a locally Poissonian behavior. 

On the other hand, our e expansion was based on the fact that, due to 
the fast diffusion, tohN << 1, the system possesses locally an almost Poissonian 
distribution. 

It is clear therefore that only on the time scale of the chemical kinetics 
can the e expansion be valid, i.e., after the decay of the initial condition due 
to the diffusion effects. 

If  we start with a Poisson distribution at t = 0, we find 

F(s, t) = exp((s - 1){(x) - Xo exp [ - (1  + e-1)t]}) 

x exp{(s - 1)xo exp [ - (1  + e-~)t]} 

= exp[(s - 1)(x)] (69) 

i.e., the system remains Poissonian (because of its linearity). So all higher 
terms in the e expansion are identically zero. This example underlines once 
again the importance of the two different time scales. 

6. C O N C L U S I O N S  

The foregoing examples clearly demonstrate the applicability of the 
asymptotic expansion of P(x,  t, ~ )  for large ~ around the Poissonian as 
well as its limitations. 

This method can be efficiently used for a detailed study of the implica- 
tions of the nonlinearity of the master equation in the mean-field theory of 
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fluctuations, and a particularly interesting application would be the analysis 
of  instabilities. As is well known, (1,2'6~ the diffusion coemcient ~ is inversely 
proportional  to the correlation length L Far  from a transition point, i.e., 
for l small, the system is well approximated by a Poisson distribution and 
the equation for the temporal evolution of the mean value is the macro- 
scopic kinetic equation. The higher order corrections in our expansion take 
into account the effect of  the small but nonzero correlation length. I f  the 
correlation length grows, as it does when a transition point is ap- 
proached, ~'2,~,~ these corrections will become more and more important 
and we expect the existence of a critical l and thus a critical e beyond which 
the expansion is no longer valid. This is clearly shown in the model of  
Section 3, where, due to the fact that it is a hard transition, %r~t tends to 
zero as the transition point is approached. The model of  Section 4 shows a 
soft transition and the existence of  an %r~t cannot be as easily decided. This 
will be discussed in a subsequent paper, where the results of  a detailed 
analysis of  instabilities will be reported. 

The advantage of the E expansion is that no truncation of the hierarchy 
of the moments  is implied. I t  is of  course appealing to try to extend this 
method to the multivariate case (3,4~ and work in this direction is in progress. 
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